Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 2sin^2x - cos (x + 1)

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:

A. \(\frac{{25}}{4}\)
B. \(\frac{{25}}{8}\)
C. 2
D. 0

Trả lời

Đáp án D

Phương pháp:

Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.

Cách giải:

\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)

Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)

Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)

\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)

Câu hỏi cùng chủ đề

Xem tất cả