Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = lnx trên đoạn [1/e^2; e] lần lượt là m

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

A. –1
B. 2e
C. \(\frac{{ - 2}}{e}\)

D. 1

Trả lời

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

Câu hỏi cùng chủ đề

Xem tất cả