Giá trị nhỏ nhất của hàm số y = x căn bậc hai (1 - x^2) là: A. 2 B. 1 C. -1 D. -1/2

Giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) là:

A. 2
B. 1
C. –1

D. \(\frac{{ - 1}}{2}\)

Trả lời

Đáp án D

Phương pháp:

+) Tìm TXĐ \(\left[ {a;b} \right]\) của hàm số.

+) Giải phương trình \(y' = 0 \Rightarrow \) các nghiệm \({x_i}\) thỏa mãn điều kiện xác định.

+) Tính \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\) và kết luận.

Cách giải:

\(y = x\sqrt {1 - {x^2}} = f\left( x \right),\,\,x \in \left( { - 1;1} \right)\)

\(y' = 1.\sqrt {1 - {x^2}} + x.\frac{{ - 2x}}{{2\sqrt {1 - {x^2}} }} = \frac{{1 - {x^2} - {x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }} = 0 \Leftrightarrow x = \pm \frac{1}{{\sqrt 2 }}\)

Ta có: \(f\left( { - 1} \right) = f\left( 1 \right) = 0,\,\,\,f\left( {\frac{1}{{\sqrt 2 }}} \right) = \frac{1}{2},\,\,f\left( {\frac{{ - 1}}{{\sqrt 2 }}} \right) = - \frac{1}{2}\)

Vậy, GTNN của hàm số là \(\frac{{ - 1}}{2}\)

Câu hỏi cùng chủ đề

Xem tất cả