Giá trị nhỏ nhất của hàm số f( x ) = x^3 - 3x trên đoạn [ - 3; 3] bằng A. 18 B. 2 C. - 2 D. - 18
47
25/04/2024
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 3x\) trên đoạn \(\left[ { - 3\,;\,3} \right]\) bằng
A. \(18\).
B. \(2\).
C. \( - 2\).
D. \( - 18\).
Trả lời
Lời giải
Chọn D
Ta có \({f^'}\left( x \right) = 3{x^2} - 3\).
\({f^'}\left( x \right) = 0 \Rightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 1}\end{array}} \right.\).
\(f\left( { - 3} \right) = - 18;\,f\left( { - 1} \right) = 2;\,f\left( 1 \right) = - 2;\,f\left( 3 \right) = 18\). Hàm số liên tục trên đoạn \(\left[ { - 3\,;\,3} \right]\).
Vậy giá trị nhỏ nhất của hàm \(f\left( x \right) = {x^3} - 3x\) trên đoạn \(\left[ { - 3\,;\,3} \right]\) bằng \( - 18\).