Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê (ảnh 1)
A. \(y = {x^3} - 3{x^2} + 2\)

B. \(y = - {x^3} - 3{x^2} + 2\)

C. \(y = {x^4} - 2{x^2} + 2\)

D. \(y = {x^3} + 3{x^2} + 2\)

Trả lời

Đáp án A

Phương pháp:

Nhận biết dạng của hàm số bậc ba và hàm số bậc 4 trùng phương.

Cách giải:

Quan sát đồ thị hàm số, ta thấy: đồ thị hàm số không phải đồ thị của hàm số bậc 4 trùng phương \( \Rightarrow \) Loại phương án C

Khi \(x \to + \infty \) thì nên \(a > 0 \Rightarrow \) Loại phương án B

Đồ thị hàm số có 2 điểm cực trị, trong đó 1 cực trị tại \(x = 0\), 1 cực trị tại \(x = {x_0} > 0\)

Xét \(y = {x^3} + 3{x^2} + 2 \Rightarrow y' = 3{x^2} + 6x,\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2 < 0\end{array} \right. \Rightarrow \) Loại phương án D

Câu hỏi cùng chủ đề

Xem tất cả