Có thể chia khối lập phương thành bao nhiêu khối tứ diện bằng nhau có các đỉnh là đỉnh của hình lập phương?      A. 2.      B. Vô số.      C. 4.   D. 6

Có thể chia khối lập phương thành bao nhiêu khối tứ diện bằng nhau có các đỉnh là đỉnh của hình lập phương?
A. \(2.\)
B. Vô số.
C. \(4.\)
D. \(6\).

Trả lời

Lời giải

Chọn D

Media VietJack

+ Chia khối lập phương \(ABCD.A'B'C'D'\) thành hai khối lăng trụ bằng nhau \(ABD.A'B'D'\) và \(BCD.B'C'D'\)

+ Xét khối lăng trụ \(ABD.A'B'D'\)và nối các đường như hình vẽ trên.

-Ta thấy hai khối tứ diện \(D'A'B'D\)\(AA'B'D\) bằng nhau vì chúng đối xứng với nhau qua mặt phẳng \(\left( {A'B'D} \right)\).

-Hai khối tứ diện \(BAB'D\)\(A'AB'D\) bằng nhau vì chúng đối xứng với nhau qua mặt phẳng \(\left( {AB'D} \right)\).Như vậy khối lăng trụ \(ABD.A'B'D'\)được chia thành 3 khối tứ diện \(D'A'B'D\),\(AA'B'D\) \(BAB'D\)bằng nhau.

+ Làm tương tự như vậy với khối lăng trụ \(BCD.B'C'D'\)ta cũng chia được 3 khối tứ diện bằng nhau.

+ Vậy ta có thể chia khối lập phương thành 6 khối tứ diện bằng nhau.

Câu hỏi cùng chủ đề

Xem tất cả