Có bao nhiêu giá trị của tham số m để phương trình x^3 + 3x^2 - m = 0 có hai nghiệm phân biệt

Có bao nhiêu giá trị của tham số m để phương trình \({x^3} + 3{x^2} - m = 0\) có hai nghiệm phân biệt?

A. 1
B. 2
C. Vô số

D. 3

Trả lời

Đáp án B

Phương pháp:

Lập bảng biến thiên của hàm số \(y = {x^3} + 3{x^2}\) , từ đó đánh giá m để đồ thị hàm số \(y = {x^3} + 3{x^2}\)cắt đường thẳng \(y = m\) tại 2 điểm phân biệt.

Cách giải:

\({x^3} + 3{x^2} - m = 0 \Leftrightarrow {x^3} + 3{x^2} = m\,\,\left( * \right)\)

Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số \(y = {x^3} + 3{x^2}\)cắt đường thẳng \(y = m\).

Xét hàm số \(y = {x^3} + 3{x^2}\), ta có \(y' = 3{x^2} + 6x;\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\)

Bảng biến thiên:

Có bao nhiêu giá trị của tham số m để phương trình x^3 + 3x^2 - m = 0 có hai nghiệm phân biệt (ảnh 1)
Để đồ thị hàm số \(y = {x^3} + 3{x^2}\) cắt đường thẳng \(y = m\) tại 2 điểm phân biệt thì \(m = 4\) hoặc \(m = 0\)
Vậy, có tất cả 2 giá trị của m để phương trình \({x^3} + 3{x^2} - m = 0\) có hai nghiệm phân biệt.

Câu hỏi cùng chủ đề

Xem tất cả