Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn. a) y = sinx - 3tanx/2; b) y = (cos2x ‒ 1)sinx

Bài 6 trang 27 SBT Toán 11 Tập 1Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn.

a) y=sinx3tanx2;

b) y = (cos2x ‒ 1)sinx.

Trả lời

a) Tập xác định của hàm số là D=π+k2πk.

Với mọi x ∈ D, ta có:

x±2πDvà sinx+2π3tanx+2π2=sinx3tanx2+π=sinx3tanx2.

Do đó hàm số y=sinx3tanx2 là hàm số tuần hoàn.

b) Hàm số y=cos2x1sinx có tập xác định làℝ.

Với mọi x ∈ ℝ, ta có: x ± 2π ∈ ℝ;

cos2x+2π1sinx+2π=cos2x+4π1sinx=cos2x1sinx.

Do đó hàm số y = (cos2x ‒ 1)sinx là hàm số tuần hoàn.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giá trị lượng giác của một góc lượng giác

Bài 3: Các công thức lượng giác

Bài 4: Hàm số lượng giác và đồ thị

Bài 5: Phương trình lượng giác

Bài tập cuối chương 1

Bài 1: Dãy số

Câu hỏi cùng chủ đề

Xem tất cả