Cho z  là số phức thay đổi thỏa mãn trị tuyệt đối z - 2 + trị tuyệt đối z + 2 = 4 căn bậc hai 2. Trong mặt phẳng tọa độ gọi M, N là điểm biểu diễn số phức z và . Giá trị lớn nhất của diện tíc

Cho z  là số phức thay đổi thỏa mãn z2+z+2=42. Trong mặt phẳng tọa độ gọi M, N là điểm biểu diễn số phức z và z¯. Giá trị lớn nhất của diện tích tam giác OMN là

A. 1

B. 2

C. 42

D. 22

Trả lời

Chọn D

Đặt z=x+yix,yz¯=xyi

Gọi F12;0, F22;0, Mx;y, Nx;y lần lượt là các điểm biểu diễn các số phức 2;2;z;z¯

Do M, N là điểm biểu diễn số phức zz¯ nên suy ra M, N  đối xứng nhau qua Ox.

Khi đó SΔOMN=xy

Ta có F1F2=2c=4c=2. Theo giả thiết ta có MF1+MF2=42, tập hợp điểm M  thỏa điều kiện trên là elip có trục lớn 2a=42a=22; trục bé 2b=2a2c2=284=4b=2

Nên elip có phương trình E:x28+y24=1

Do đó 1=x28+y242x28.y24=xy22SΔOMN=xy22

Đẳng thức xảy ra khi x=2y=2

Câu hỏi cùng chủ đề

Xem tất cả