Cho tứ diện SABC, biết vecto SA = 2 vecto SM ;2 vecto SB  = 3 vecto SN. Tính thể tích khối tứ diện SMNC biết thể tích khối tứ diện SABC bằng 9. A. 3    B. 4    C. 2  D. 6

Cho tứ diện \(SABC\), biết \(\overrightarrow {SA} = 2\overrightarrow {SM} ;2\overrightarrow {SB} = 3\overrightarrow {SN} \). Tính thể tích khối tứ diện \(SMNC\) biết thể tích khối tứ diện \(SABC\) bằng \(9.\)
A. \(3\)
B. \(4\)
C. \(2\)
D. \(6\)

Trả lời
Lời giải
Chọn A.
Ta có \(\overrightarrow {SA} = 2\overrightarrow {SM} \) nên \(M\) là trung điểm của \(SA\)\(2.\overrightarrow {SB} = 3\overrightarrow {SN} \) nên chia \(SB\) thành 3 phân sao cho \(\frac{{SN}}{{SB}} = \frac{2}{3}\).
Khi đó, theo công thức tỉ lệ thể tích ta có:
\[\frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SC}}{{SC}} = \frac{1}{2}.\frac{2}{3}.1 = \frac{1}{3} \Rightarrow {V_{S.MNC}} = \frac{1}{3}{V_{S.ABC}} = \frac{1}{3}.9 = 3\,\,\,(DVTT)\]
Media VietJack

Câu hỏi cùng chủ đề

Xem tất cả