Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = a và OC = 2a

Bài 7.38 trang 65 Toán 11 Tập 2: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = a và OC = 2a. Tính khoảng cách từ điểm O đến mặt phẳng ABC.

Trả lời

Bài 7.38 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Kẻ OD  BC tại D.

Có OA  OB, OA  OC nên OA  (OBC), suy ra OA  BC mà OD  BC nên

BC  (OAD).

Kẻ OE  AD tại E.

Vì BC  (OAD) nên BC  OE mà OE  AD nên OE  (ABC).

Do đó d(O, (ABC)) = OE.

Xét tam giác OBC vuông tại O, OD là đường cao có:

1OD2=1OB2+1OC2=12a2+14a2=34a2.

Vì OA  (OBC) nên OA  OD.

Xét tam giác AOD vuông tại O, OE là đường cao nên

1OE2=1OA2+1OD2=1a2+34a2=74a2OE=2a77.

Vậy d(O, (ABC))=2a77.

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả