Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC = a và góc CAB = 30 độ

Bài 7.40 trang 65 Toán 11 Tập 2: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC = a và CAB^ = 30o. Biết SA  (ABC) và SA = a2 .

a) Chứng minh rằng (SBC)  (SAB).

b) Tính theo a khoảng cách từ điểm A đến đường thẳng SC và khoảng cách từ điểm A đến mặt phẳng (SBC).

Trả lời

Bài 7.40 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Do tam giác ABC vuông tại B nên AB  BC.

Vì SA  (ABC) nên SA  BC mà AB  BC nên BC  (SAB), suy ra (SBC)  (SAB).

b) Kẻ AD  SC tại D. Khi đó d(A, SC) = AD.

Vì SA  (ABC) nên SA  AC nên tam giác SAC vuông tại A.

Xét tam giác ABC vuông tại B, sinCAB^ = BCAC

AC = BCsinCAB^=asin30°= 2a.

Xét tam giác SAC vuông tại A, AD là đường cao, có:

1AD2=1SA2+1AC2=12a2+14a2=34a2AD=2a33.

Vậy d(A, SC) =2a33 .

Kẻ AE  SB tại E.

Vì BC  (SAB) nên BC  AE mà AE  SB nên AE  (SBC).

Khi đó d(A, (SBC)) = AE.

Xét tam giác ABC vuông tại B, có AB = BCtan30°=atan30°= a3.

Vì SA  (ABC) nên SA  AB, suy ra tam giác SAB vuông tại A.

Xét tam giác SAB vuông tại A, AE là đường cao, có: 1AE2=1SA2+1AB2 .

=12a2+13a2=56a2AE = a65

Vậy d(A, (SBC)) = a65 .

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả