Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC
816
07/12/2023
Bài 7.39 trang 65 Toán 11 Tập 2: Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC ⊥ (AID).
b) Kẻ đường cao AH của tam giác AID. Chứng minh rằng AH ⊥ (BCD).
c) Kẻ đường cao IJ của tam giác AID. Chứng minh rằng IJ là đường vuông góc chung của AD và BC.
Trả lời

a) Vì tam giác ABC cân tại A, AI là trung tuyến nên AI đồng thời là đường cao hay AI ⊥ BC.
Vì tam giác BCD cân tại D, DI là trung tuyến nên DI đồng thời là đường cao hay DI ⊥ BC.
Có AI⊥BC và DI ⊥ BC nên BC ⊥ (AID).
b) Do AH là đường cao của tam giác AID nên AH ⊥ DI.
Vì BC ⊥ (AID) nên BC ⊥ AH mà AH ⊥ DI nên AH ⊥ (BCD).
c) Vì BC ⊥ (AID) nên BC ⊥ IJ, mà IJ là đường cao của tam giác AID nên IJ ⊥ AD. Do đó IJ là đường vuông góc chung của AD và BC.
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: