Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD

Bài 16 trang 100 SBT Toán 11Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.

Trả lời

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.  (ảnh 1)

Ta có: BD = (ABD) ∩ (BCD).

Lại có M ∈ AB ⊂ (ABD), N ∈ AD ⊂ (ABD) nên MN ⊂ (ABD).

Mà MN ⊂ (MNP) nên MN = (ABD) ∩ (MNP).

Vì BC cắt mặt phẳng (MNP) tại Q nên PQ là giao tuyến của (MNP) và (BCD).

Khi đó, ba mặt phẳng (ABD), (BCD), (MNP) đôi một cắt nhau theo các giao tuyến BD, PQ, MN.

Mà trong tam giác ABD, vì MN là đường trung bình nên MN // BD.

Vậy theo định lí về giao tuyến của ba mặt phẳng, ta có PQ // BD.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Hình lăng trụ và hình hộp

Câu hỏi cùng chủ đề

Xem tất cả