Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD. Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD)

Bài 2 trang 55 SBT Toán 11 Tập 2Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD. Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD). Chứng minh rằng H là trực tâm của ∆BCD và AD ⊥ BC.

Trả lời

Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD Gọi H là hình chiếu vuông góc của A

Theo giả thiết: Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD Gọi H là hình chiếu vuông góc của A

Suy ra CD ⊥AHB

Do đó CD ⊥ BH(1)

Chứng minh tương tự: CH ⊥ BD (2)

Từ (1) và (2) suy ra H là trực tâm của ∆BCD.

Do đó DH ⊥ BC.

Lại có AH ⊥ BC suy ra BC ⊥ (AHD).

Vậy H là trực tâm của ∆BCD và AD ⊥ BC.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả