Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H.

Bài 2 trang 78 Toán 7 Tập 2:

Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H. Chứng minh rằng MH vuông góc với BC.

Trả lời

GT

ABC vuông tại A;

M thuộc tia BA, BM = BC;

AH là tia phân giác của góc B, H  AC.

KL

MH  BC.

Giải Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi N là giao điểm của BH và MC.

Xét BMN và BCN có:

BM = BC (giả thiết),

MBN^=CBN^ (do BN là tia phân giác của góc B),

BN là cạnh chung,

Do đó BMN = BCN (c.g.c)

Suy ra BNM^=BNC^ (hai góc tương ứng)

Mà BNM^+BNC^=180° (hai góc kề bù)

Nên BNM^=BNC^=180o2=90o hay BN  MC.

Tam giác BMC có CA  BM (do CA  BA), BN  MC (chứng minh trên)

Do đó CA, BN là hai đường cao của tam giác BMC.

Mà CA và BN cắt nhau tại H nên H là trực tâm của tam giác BMC.

Do đó MH  BC.

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: 

Bài 6: Tính chất ba đường trung trực của tam giác

Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 8: Tính chất ba đường cao của tam giác

Bài 9: Tính chất ba đường phân giác của tam giác

Bài 10: Hoạt động thực hành và trải nghiệm. Làm giàn hoa tam giác để trang trí lớp học

Bài tập cuối chương 8

Câu hỏi cùng chủ đề

Xem tất cả