Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Bài 4.25 trang 84 Toán 7 Tập 1Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.

a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.

Trả lời

a)

GT

ΔABC, M là trung điểm BC, AMBC.

KL

 ΔABC cân tại A.

Tài liệu VietJack

Vì M là trung điểm của BC và AMBC (theo giả thiết) nên đường thẳng AM là đường trung trực của đoạn thẳng BC.

Điểm A nằm trên đường trung trực của đoạn thẳng BC nên AB = AC (tính chất đường trung trực của một đoạn thẳng).

Do đó tam giác ABC cân tại A (định nghĩa tam giác cân).

b)

GT

ΔABC, M là trung điểm BC;

AM là tia phân giác của góc BAC.

KL

 ΔABC cân tại A.

Tài liệu VietJack

Trên tia đối của tia MA lấy điểm D sao cho MD = MA.

Xét tam giác DBM và tam giác ACM có:

BM = CM (do M là trung điểm của BC);

DMB^=AMC^ (hai góc đối đỉnh);

MD = MA (theo cách vẽ).

Vậy ΔDBM=ΔACM (c.g.c).

Suy ra DB = AC (hai cạnh tương ứng)       .         (1)

Và BDM^=CAM^ (hai góc tướng ứng).

Mà BAM^=CAM^ (do AM là tia phân giác của góc BAC).

Do đó BDM^=BAM^=CAM^.

Hay BDA^=BAD^ suy ra tam giác ABD cân tại B.

Suy ra AB = DB (định nghĩa tam giác cân).         (2)

Từ (1) và (2) suy ra AB = AC.

Do đó tam giác ABC cân tại A (định nghĩa tam giác cân).

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 74

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Luyện tập chung trang 86

Bài tập cuối chương 4 trang 87

Bài 17: Thu thập và phân loại dữ liệu

Câu hỏi cùng chủ đề

Xem tất cả