Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM
1.4k
22/10/2023
Bài 4.24 trang 84 Toán 7 Tập 1: Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Trả lời
GT
|
cân tại A, M là trung điểm BC.
|
KL
|
và AM là tia phân giác của góc BAC.
|
Chứng minh (hình vẽ trên):
Tam giác ABC cân tại A (theo giả thiết) nên AB = AC (định nghĩa tam giác cân).
Xét tam giác ABM và tam giác ACM có:
AB = AC (chứng minh trên);
BM = CM (do M là trung điểm của BC);
AM là cạnh chung.
Vậy (c.c.c).
Suy ra (hai góc tương ứng).
Mà góc AMB và góc AMC là hai góc kề bù nên ta có (tính chất hai góc kề bù).
Do đó .
Suy ra
Từ (chứng minh trên), suy ra (hai góc tương ứng).
Do đó AM là tia phân giác của góc BAC.
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Luyện tập chung trang 74
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Luyện tập chung trang 86
Bài tập cuối chương 4 trang 87
Bài 17: Thu thập và phân loại dữ liệu