Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC

Bài 4.28 trang 84 Toán 7 Tập 1: Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.

Trả lời

GT

ΔABC cân tại A, đường cao AD.

KL

AD là đường trung trực của BC.

Tài liệu VietJackChứng minh (hình vẽ trên):

Vì AD là đường cao của tam giác ABC nên ADB^=ADC^=90°.

Khi đó tam giác ABD vuông tại D và tam giác ACD vuông tại D.

Xét tam giác ABD (vuông tại D) và tam giác (ACD vuông tại D) ta có:

AB = AC (do tam giác ABC cân tại A);

AD là cạnh chung.

Vậy ΔABD=ΔACD (cạnh huyền – cạnh góc vuông).

Suy ra DB = DC (hai cạnh tương ứng).

Do đó D là trung điểm của BC.

Khi đó đường thẳng AD vuông góc với đoạn thẳng BC tại trung điểm D của BC nên AD là đường trung trực của BC.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 74

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Luyện tập chung trang 86

Bài tập cuối chương 4 trang 87

Bài 17: Thu thập và phân loại dữ liệu

Câu hỏi cùng chủ đề

Xem tất cả