Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P lần lượt thuộc tia OA, OB, OC

Bài 4 trang 78 Toán 8 Tập 2: Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P lần lượt thuộc tia OA, OB, OC sao cho OAOM=OBON=OCOP=23.Chứng minh ∆ABC ᔕ ∆MNP.

Trả lời

Bài 4 trang 78 Toán 8 Tập 2 Cánh diều | Giải Toán 8

⦁ Xét tam giác OMN có: OAOM=OBON=23 nên AB // MN (định lí Thalès đảo)

Do đó OAOM=OBON=ABMN (1)

⦁ Xét tam giác OMP có: OAOM=OCOP=23 nên AC // MP (định lí Thalès đảo)

Do đó OAOM=OCOP=ACMP (2)

⦁ Xét tam giác ONP có: OCOP=OBON=23 nên BC // NP (định lí Thalès đảo)

Do đó OCOP=OBON=BCNP (3)

Từ (1), (2) và (3) ta có ABMN=ACMP=BCNP

Do đó ∆ABC ᔕ ∆MNP (c.c.c)

Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả