Cho tam giác ABC có đường trung tuyến AM (M ∈ BC). Tia phân giác của góc AMB  cắt AB tại D, tia phân giác của góc AMC cắt AC tại E

Bài 6 trang 48 sách bài tập Toán 8 Tập 2: Cho tam giác ABC có đường trung tuyến AM (M ∈ BC). Tia phân giác của AMB^ cắt AB tại D, tia phân giác của AMC^ cắt AC tại E.

a) Chứng minh DE // BC;

b) Gọi I là giao điểm của DE với AM. Chứng mình I là trung điểm của DE.

Trả lời

Cho tam giác ABC có đường trung tuyến AM (M thuộc BC). Tia phân giác của góc AMB

Vì ME là phân giác của AMC^ trong ∆ABC nên EAEC=MAMC.

Mà MB = MC, suy ra DADB=EAEC.

Xét ∆ABC có DADB=EAEC nên theo định lí Thalès đảo, ta có DE // BC.

b) Theo hệ quả của định lí Thalès:

• Xét ∆ABM có DI // MB (vì I ∈ DE, M ∈ BC), ta có AIAM=DIMB.

• Xét ∆ACM có EI // MC, ta có AIAM=IEMC.

Suy ra IEMC=DIMB, mà MC = MB, suy ra IE = DI.

Vậy I là trung điểm của DE.

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Định lí Thalès trong tam giác

Bài 2: Đường trung bình của tam giác

Bài 3: Tính chất đường phân giác của tam giác

Bài tập cuối chương 7

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Câu hỏi cùng chủ đề

Xem tất cả