Cho tam giác ABC, chứng minh rằng: a) tan A + tan B + tan C = tan A
Bài 29 trang 16 SBT Toán 11 Tập 1: Cho tam giác ABC, chứng minh rằng:
a) tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
b) .
Bài 29 trang 16 SBT Toán 11 Tập 1: Cho tam giác ABC, chứng minh rằng:
a) tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
b) .
a) Vì tam giác ABC không vuông nên A, B, C khác , do đó tan A, tan B, tan C xác định.
Do A + B + C = π nên A + B = π – C, do đó tan(A + B) = tan(π – C) = tan(– C) = – tanC.
Mà .
Khi đó
⇔ tan A + tan B = – tan C . (1 – tan A . tan B)
⇔ tan A + tan B = – tan C + tan A . tan B . tan C
⇔ tan A + tan B + tan C = tan A . tan B . tan C.
b) Ta có , suy ra nên
.
Xem thêm lời giải bài tập SBT Toán 11 Cánh diều hay, chi tiết khác:
Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác
Bài 2: Các phép biến đổi lượng giác
Bài 3: Hàm số lượng giác và đồ thị