Cho số phức z và w thỏa mãn z + w = 3 + 4i và |z - w| = 9. Tìm giá trị lớn nhất của biểu thức

Cho số phức z w thỏa mãn \(z + {\rm{w}} = 3 + 4i\)\(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)

A. \(Max\,T = \sqrt {176} \)
B. \(Max\,T = 14\)
C. \(Max\,T = 4\)

D. \(Max\,T = \sqrt {106} \)

Trả lời

Đáp án D

Phương pháp:

+) Rút z theo w, tìm tập hợp các điểm biểu diễn số phức w.

+) Biểu diễn hình học tất cả các yếu tố có trong bài toán.

+) Tìm điều kiện để P đạt giá trị lớn nhất.

Cách giải:

\(z + {\rm{w}} = 3 + 4i \Rightarrow z = 3 + 4i - {\rm{w}} \Rightarrow \left| {3 + 4i - 2w} \right| = 9 \Leftrightarrow \left| {{\rm{w}} - \frac{3}{2} - 2i} \right| = \frac{9}{2}\)

Cho số phức z và w thỏa mãn z + w = 3 + 4i và |z - w| = 9. Tìm giá trị lớn nhất của biểu thức (ảnh 1)

Khi đó tập hợp các điểm biểu diễn số phức w là đường tròn tâm \(I\left( {\frac{3}{2};2} \right)\) bán kính \(R = \frac{9}{2}\)

Ta có: \(T = \left| z \right| + \left| {\rm{w}} \right| = \left| {{\rm{w}} - 3 - 4i} \right| + \left| {\rm{w}} \right|\)

Gọi M là điểm biểu diễn số phức w, \(A\left( {3;4} \right)\) là điểm biểu diễn số phức \(z = 3 + 4i\). Dễ thấy I là trung điểm của OA.

Khi đó \(P = MO + MA\)

\({P_{max}} \Leftrightarrow OM = OA \Leftrightarrow MI \bot OA\)

Ta có: \(OI = \sqrt {\frac{9}{4} + 4} = \frac{5}{2},\,\,\,IM = R = \frac{9}{2}\)

\( \Rightarrow OM = \sqrt {\frac{{25}}{4} + \frac{{81}}{4}} = \frac{{\sqrt {106} }}{2}\)

\( \Rightarrow {P_{max}} = 2OM = \sqrt {106} \)

Câu hỏi cùng chủ đề

Xem tất cả