Cho mặt cầu (S) có bán kính R, hình trụ (H) có đường tròn hai đáy thuộc (S) và có chiều cao

Cho mặt cầu (S) có bán kính R, hình trụ (H) có đường tròn hai đáy thuộc (S) và có chiều cao \(h = \frac{{2R}}{{\sqrt 3 }}\). Tính tỉ số thể tích \({V_1}\) của (H) và \({V_2}\) của (S).

A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{3}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{9}{{16}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\sqrt 3 }}{3}\)

D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\sqrt 3 }}{8}\)

Trả lời

Đáp án C

Phương pháp:

Thể tích khối trụ: \(V = \pi {r^2}h\)

Thể tích khối cầu: \(V = \frac{4}{3}\pi {R^3}\)

Cách giải:

Cho mặt cầu (S) có bán kính R, hình trụ (H) có đường tròn hai đáy thuộc (S) và có chiều cao (ảnh 1)

Thể tích khối cầu: \({V_2} = \frac{4}{3}\pi {R^3}\)

Tam giác OIA vuông tại O \( \Rightarrow OA = \sqrt {I{A^2} - O{I^2}} = \sqrt {{R^2} - {{\left( {\frac{R}{{\sqrt 3 }}} \right)}^2}} = \frac{{R\sqrt 6 }}{3}\)

Thể tích khối trụ: \({V_1} = \pi {r^2}h = \pi .\left( {\frac{{R\sqrt 6 }}{3}} \right).\frac{{2R}}{{\sqrt 3 }} = \frac{{4\sqrt 3 \pi {R^3}}}{9}\)

\( \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{4\sqrt 3 \pi {R^3}}}{9}}}{{\frac{4}{3}\pi {R^3}}} = \frac{{\sqrt 3 }}{3}\)

Câu hỏi cùng chủ đề

Xem tất cả