Câu hỏi:
26/01/2024 46
Cho hình vẽ như sau:
Biết tia Ny là tia phân giác của \(\widehat {xNz},\widehat {yNz} = 40^\circ ,\widehat {NPM} = \widehat {tPv}\) và Nz // Pt. Số đo của \(\widehat {NPM}\) là bao nhiêu và tam giác MNP là tam giác gì?
Cho hình vẽ như sau:
Biết tia Ny là tia phân giác của \(\widehat {xNz},\widehat {yNz} = 40^\circ ,\widehat {NPM} = \widehat {tPv}\) và Nz // Pt. Số đo của \(\widehat {NPM}\) là bao nhiêu và tam giác MNP là tam giác gì?
A. \(\widehat {NPM} = 40^\circ \) và tam giác MNP và tam giác nhọn;
A. \(\widehat {NPM} = 40^\circ \) và tam giác MNP và tam giác nhọn;
B. \(\widehat {NPM} = 50^\circ \) và tam giác MNP và tam giác nhọn;
B. \(\widehat {NPM} = 50^\circ \) và tam giác MNP và tam giác nhọn;
C. \(\widehat {NPM} = 40^\circ \) và tam giác MNP và tam giác vuông;
C. \(\widehat {NPM} = 40^\circ \) và tam giác MNP và tam giác vuông;
D. \(\widehat {NPM} = 50^\circ \) và tam giác MNP và tam giác vuông.
D. \(\widehat {NPM} = 50^\circ \) và tam giác MNP và tam giác vuông.
Trả lời:
Đáp án đúng là: D
Vì tia Ny là tia phân giác của \(\widehat {xNz}\) nên \[\widehat {yNz} = \frac{1}{2}.\widehat {xNz}\] (tính chất tia phân giác của một góc)
Suy ra \(\widehat {xNz} = 2.\widehat {yNz}\)
Mà \(\widehat {yNz} = 40^\circ \) nên \(\widehat {xNz} = 2.\widehat {yNz} = 2.40^\circ = 80^\circ \)
Lại có Nz // Pt nên \(\widehat {xNz} = \widehat {NPt}\) (hai góc so le trong)
Do đó \(\widehat {NPt} = 80^\circ \)
Ta lại có \(\widehat {MPN} + \widehat {NPt} + \widehat {tPv} = 180^\circ \)
Mà \(\widehat {NPM} = \widehat {tPv}\), \(\widehat {NPt} = 80^\circ \)
Suy ra \[\widehat {NPM} + 80^\circ + \widehat {NPM} = 180^\circ \]
Hay \[2.\widehat {NPM} = 180^\circ - 80^\circ = 100^\circ \]
Do đó \[\widehat {NPM} = 100^\circ :2 = 50^\circ \]
Mặt khác \(\widehat {MNP} = \widehat {xNy}\) (hai góc đối đỉnh) nên \(\widehat {MNP} = 40^\circ \)
Xét tam giác MNP có \[\widehat {NPM} = 50^\circ \] và \(\widehat {MNP} = 40^\circ \) ta có:
\(\widehat {NMP} + \widehat {MNP} + \widehat {NPM} = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat {NMP} = 180^\circ - \widehat {MNP} - \widehat {NPM}\) hay \(\widehat {NMP} = 180^\circ - 40^\circ - 50^\circ = 90^\circ \)
Suy ra tam giác MNP vuông tại M.
Vậy ta chọn phương án D.
Đáp án đúng là: D
Vì tia Ny là tia phân giác của \(\widehat {xNz}\) nên \[\widehat {yNz} = \frac{1}{2}.\widehat {xNz}\] (tính chất tia phân giác của một góc)
Suy ra \(\widehat {xNz} = 2.\widehat {yNz}\)
Mà \(\widehat {yNz} = 40^\circ \) nên \(\widehat {xNz} = 2.\widehat {yNz} = 2.40^\circ = 80^\circ \)
Lại có Nz // Pt nên \(\widehat {xNz} = \widehat {NPt}\) (hai góc so le trong)
Do đó \(\widehat {NPt} = 80^\circ \)
Ta lại có \(\widehat {MPN} + \widehat {NPt} + \widehat {tPv} = 180^\circ \)
Mà \(\widehat {NPM} = \widehat {tPv}\), \(\widehat {NPt} = 80^\circ \)
Suy ra \[\widehat {NPM} + 80^\circ + \widehat {NPM} = 180^\circ \]
Hay \[2.\widehat {NPM} = 180^\circ - 80^\circ = 100^\circ \]
Do đó \[\widehat {NPM} = 100^\circ :2 = 50^\circ \]
Mặt khác \(\widehat {MNP} = \widehat {xNy}\) (hai góc đối đỉnh) nên \(\widehat {MNP} = 40^\circ \)
Xét tam giác MNP có \[\widehat {NPM} = 50^\circ \] và \(\widehat {MNP} = 40^\circ \) ta có:
\(\widehat {NMP} + \widehat {MNP} + \widehat {NPM} = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat {NMP} = 180^\circ - \widehat {MNP} - \widehat {NPM}\) hay \(\widehat {NMP} = 180^\circ - 40^\circ - 50^\circ = 90^\circ \)
Suy ra tam giác MNP vuông tại M.
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có \(\widehat B = 35^\circ ,\widehat C = 65^\circ .\) Tia phân giác góc A cắt cạnh BC tại D.
Tam giác ADC là tam giác gì?
Cho tam giác ABC có \(\widehat B = 35^\circ ,\widehat C = 65^\circ .\) Tia phân giác góc A cắt cạnh BC tại D.
Tam giác ADC là tam giác gì?
Câu 3:
Cho tam giác ABC như hình vẽ có \(\widehat {ADC} = 60^\circ .\)
Tam giác ABD là tam giác gì?
Cho tam giác ABC như hình vẽ có \(\widehat {ADC} = 60^\circ .\)
Tam giác ABD là tam giác gì?
Câu 4:
Cho tam giác ABC vuông tại A. Lấy điểm K nằm trên cạnh AC. Lấy điểm E nằm trên cạnh BK. Tam giác BEC là tam giác gì?
Cho tam giác ABC vuông tại A. Lấy điểm K nằm trên cạnh AC. Lấy điểm E nằm trên cạnh BK. Tam giác BEC là tam giác gì?
Câu 6:
Cho hình vẽ:
Biết Mx // Py, \(\widehat {xMN} = 60^\circ \) và \[\widehat {NPy} = 34^\circ .\] Tính số đo góc MNP và tam giác MNP là tam giác gì?
Cho hình vẽ:
Biết Mx // Py, \(\widehat {xMN} = 60^\circ \) và \[\widehat {NPy} = 34^\circ .\] Tính số đo góc MNP và tam giác MNP là tam giác gì?
Câu 7:
Cho hình vẽ biết \(\widehat {ABC} = 50^\circ ,\widehat {ACB} = 40^\circ \) và \(\widehat {BAE} = \widehat {AED}.\)
Tam giác CDE là tam giác gì?
Cho hình vẽ biết \(\widehat {ABC} = 50^\circ ,\widehat {ACB} = 40^\circ \) và \(\widehat {BAE} = \widehat {AED}.\)
Tam giác CDE là tam giác gì?
Câu 8:
Cho tam giác ABC như hình vẽ:
Tính số đo góc A và cho biết tam giác ABC là tam gác gì?