Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D
271
07/11/2023
Bài 3.5 trang 55 Toán 8 Tập 1: Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.
Trả lời
Gọi O là giao điểm của AC và BD.
Xét ∆DOE và ∆COE có:
(vì OD ⊥ DE; OC ⊥ CE);
EC = ED (giả thiết);
Cạnh OE chung
Do đó ∆DOE = ∆COE (cạnh huyền – cạnh góc vuông).
Suy ra OC = OD (hai cạnh tương ứng) (1)
Do đó tam giác OCD cân tại O nên .
Vì ABCD là hình thang nên AB // CD suy ra (cặp góc so le trong).
Do đó (vì ).
Suy ra tam giác OAB cân tại O nên OA = OB (2)
Ta có: AC = OA + OC và BD = OB + OD (3)
Từ (1), (2) và (3) suy ra AC = BD
Hình thang ABCD có AC = BD nên ABCD là hình thang cân.
Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 2