Cho hình nón đỉnh S, đáy là đường tròn (O; r). Một mặt phẳng đi qua đỉnh của hình nón
30
29/04/2024
Cho hình nón đỉnh S, đáy là đường tròn (O; r). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho \(SA = AB = \frac{{8r}}{5}\). Tính theo r khoảng cách từ O đến (SAB).
A. \(\frac{{2\sqrt 2 r}}{5}\)
B. \(\frac{{3\sqrt {13} r}}{{20}}\)
C. \(\frac{{3\sqrt 2 r}}{{20}}\)
D. \(\frac{{\sqrt {13} r}}{{20}}\)
Trả lời
Đáp án B
Phương pháp:
+) Xác định khoảng cách từ O đến (SAB)
+) Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách vừa xác định được.
Cách giải:
Gọi I là trung điểm của AB, kẻ OH vuông góc SI tại H.
Ta có: \(\left\{ \begin{array}{l}OI \bot AB\\SO \bot AB\end{array} \right. \Rightarrow AB \bot \left( {SOI} \right) \Rightarrow AB \bot OH\)
Mà \(SI \bot OH \Rightarrow OH \bot \left( {SAB} \right) \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OH\)
Ta có: \(AB = \frac{{8r}}{5} \Rightarrow AI = \frac{{4r}}{5}\)
\(\Delta SAI\) vuông tại I \( \Rightarrow SI = \sqrt {S{A^2} - A{I^2}} = \sqrt {{{\left( {\frac{{8r}}{5}} \right)}^2} - {{\left( {\frac{{4r}}{5}} \right)}^2}} = \frac{{4\sqrt 3 r}}{5}\)
\(\Delta OAI\) vuông tại I \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{r^2} - {{\left( {\frac{{4r}}{5}} \right)}^2}} = \frac{{3r}}{5}\)
\(\Delta SOI\) vuông tại O \( \Rightarrow OS = \sqrt {S{I^2} - O{I^2}} = \sqrt {{{\left( {\frac{{4\sqrt 3 r}}{5}} \right)}^2} - {{\left( {\frac{{3r}}{5}} \right)}^2}} = \frac{{\sqrt {39} r}}{5}\)
\(\Delta SOI\) vuông tại O, \(OH \bot SI \Rightarrow OH.SI = SO.OI \Leftrightarrow OH.\frac{{4\sqrt 3 r}}{5} = \frac{{\sqrt {39} r}}{5}.\frac{{3r}}{5} \Leftrightarrow OH = \frac{{3\sqrt {13} r}}{{20}}\)