Cho hình chóp tứ giác đều S.ABCD có tâm đáy là O. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Hình hộp có đáy là MNPQ, đáy kia là M'N'P'Q' với M' là trung điểm của AO. Gọi V1 là

Cho hình chóp tứ giác đều \(S.ABCD\) có tâm đáy là \(O\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trung điểm của \(SA,\,SB,\,SC,\,SD\). Hình hộp có đáy là \(MNPQ\), đáy kia là \(M'N'P'Q'\) với \(M'\) là trung điểm của \(AO\). Gọi \({V_1}\) là thể tích khối chóp \(S.ABCD\), \({V_2}\) là thể tích khối hộp \(MNPQ.M'N'P'Q'\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)

Media VietJack

A. \[\frac{5}{8}\].
B. \[\frac{8}{5}\].
C. \[\frac{8}{3}\].
D. \[\frac{3}{8}\].

Trả lời
Lời giải
Đặt \(AB = a,\,SO = h \Rightarrow {V_1} = \frac{1}{3}h{a^2}\).
Do \(M,\,M'\) lần lượt là trung điểm của \(SA,\,OA \Rightarrow MM'{\rm{//}}SO,\,MM' = \frac{1}{2}h\).
Do \(M,\,N\) lần lượt là trung điểm của \(SA,\,SB \Rightarrow MN{\rm{//}}AB,\,MN = \frac{1}{2}a\), suy ra \(MNPQ.M'N'P'Q'\) là hình hộp chữ nhật nên \({V_2} = {\left( {\frac{1}{2}a} \right)^2}\frac{1}{2}h = \frac{{h{a^2}}}{8}\).
Khi đó \(\frac{{{V_1}}}{{{V_2}}} = \frac{{h{a^2}}}{3}.\frac{8}{{h{a^2}}} = \frac{8}{3}\).

Câu hỏi cùng chủ đề

Xem tất cả