Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là
Đáp án C
Phương pháp:
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Leftarrow {V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}}\)
Cách giải:
Gọi M là trung điểm của BC, O là tâm của hình vuông ABCD
Khi đó: \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\)
\( \Rightarrow \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \left( {SM;OM} \right) = SMO = \alpha \)
Hình vuông ABCD có cạnh bằng a \( \Rightarrow OM = \frac{a}{2}\)
\(\Delta SOM\) vuông tại O \( \Rightarrow SO = OM.\tan M = \frac{a}{2}.\tan \alpha = \frac{{a\,\tan \alpha }}{2}\)
Thể tích khối chóp S.ABCDlà: \(V = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\,\tan \alpha }}{2}.{a^2} = \frac{{{a^3}\tan \alpha }}{6}\)