Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:
A. \(\frac{{{a^3}\tan \alpha }}{2}\)
B. \(\frac{{{a^3}\tan \alpha }}{3}\)
C. \(\frac{{{a^3}\tan \alpha }}{6}\)
D. \(\frac{{2{a^3}\tan \alpha }}{3}\)

Trả lời

Đáp án C

Phương pháp:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Leftarrow {V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}}\)

Cách giải:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là  (ảnh 1)

Gọi M là trung điểm của BC, O là tâm của hình vuông ABCD

Khi đó: \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\)

\( \Rightarrow \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \left( {SM;OM} \right) = SMO = \alpha \)

Hình vuông ABCD có cạnh bằng a \( \Rightarrow OM = \frac{a}{2}\)

\(\Delta SOM\) vuông tại O \( \Rightarrow SO = OM.\tan M = \frac{a}{2}.\tan \alpha = \frac{{a\,\tan \alpha }}{2}\)

Thể tích khối chóp S.ABCDlà: \(V = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\,\tan \alpha }}{2}.{a^2} = \frac{{{a^3}\tan \alpha }}{6}\)

Câu hỏi cùng chủ đề

Xem tất cả