Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác đều SAB và nằm trong
30
01/05/2024
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác đều SAB và nằm trong mặt phẳng vuông góc với đáy. Tính bán kính của mặt cầu ngoại tiếp hình chóp.
A. \(\frac{{a\sqrt {21} }}{6}\)
B. \(\frac{{a\sqrt {11} }}{4}\)
C. \(\frac{{2a}}{3}\)
D. \(\frac{{a\sqrt 7 }}{3}\)
Trả lời
Đáp án A
Phương pháp:
Xác định tâm mặt cầu ngoại tiếp hình chóp
Tính bán kính mặt cầu.
Cách giải:
Gọi M là trung điểm của AB; G là trọng tâm tam giác SAB; O là tâm của
hình vuông ABCD
Do tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên \(SM \bot \left( {ABCD} \right)\)
\( \Rightarrow SMO = {90^0}\). Dựng hình chữ nhật GMOI. Khi đó:
\(OI//GM \Rightarrow OI \bot \left( {ABCD} \right) \Rightarrow IA = IB = IC = ID\,\,\left( 1 \right)\)
Mặt khác \(GI//MO\), mà \(MO \bot AB,\,\,MO \bot SM \Rightarrow MO \bot \left( {SAB} \right)\)
\( \Rightarrow GI \bot \left( {SAB} \right) \Rightarrow IA = IS = IB\,\,\,\left( 2 \right)\)
Từ (1), (2) \( \Rightarrow \) I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD
Ta có: G là trọng tâm tam giác đều SAB
\( \Rightarrow GM = \frac{1}{3}.SM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6} \Rightarrow OI = \frac{{a\sqrt 3 }}{6}\)
ABCD là hình vuông cạnh a \( \Rightarrow OB = \frac{{BD}}{2} = \frac{{a\sqrt 2 }}{2}\)
GMOI là hình chữ nhật
\( \Rightarrow IB = \sqrt {O{I^2} + O{B^2}} = \sqrt {\frac{1}{{12}}{a^2} + \frac{1}{2}{a^2}} = \sqrt {\frac{7}{{12}}} a = \frac{{a\sqrt {21} }}{6}\)
Vậy, bán kính của mặt cầu ngoại tiếp hình chóp là: \(\frac{{a\sqrt {21} }}{6}\)