Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA, SD. Mặt phẳng ( alpha ) chứa MN cắt các cạnh SB, SC lần lượt tại (Q), (P). Đặt SQ/SB = x,
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(SA\), \(SD\). Mặt phẳng \(\left( \alpha \right)\) chứa \(MN\) cắt các cạnh \(SB\), \(SC\) lần lượt tại \(Q\), \(P\). Đặt \(\frac{{SQ}}{{SB}} = x\), \({V_1}\) là thể tích của khối chóp \(S.MNQP\), \(V\) là thể tích của khối chóp \(S.ABCD\). Tìm \(x\) để \({V_1} = \frac{1}{2}V\).
A. \(x = \frac{{ - 1 + \sqrt {33} }}{4}\).
B. \(x = \sqrt 2 \).
C. \(x = \frac{1}{2}\).
D. \(x = \frac{{ - 1 + \sqrt {41} }}{4}\).