Cho hình chóp S.ABC có đáy là tam giác vuông tại B. Biết Delta SAB là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng ( ABC ). Biết AB = a, AC = a căn bậc hai của 3. Thể tích khối chó

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\). Biết \(\Delta SAB\) là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(AB = a\), \(AC = a\sqrt 3 \). Thể tích khối chóp \(S.ABC\) là:
A. \(\frac{{{a^3}}}{4}\).
B. \(\frac{{{a^3}\sqrt 6 }}{4}\).
C. \(\frac{{{a^3}\sqrt 2 }}{6}\).
D. \(\frac{{{a^3}\sqrt 6 }}{{12}}\).

Trả lời
Lời giải
Chọn D

Media VietJack

Gọi \(E\) là trung điểm cạnh \(AB\). Ta có:
\(\left. \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\Trong{\rm{ }}\left( {SAB} \right):SE \bot AB\end{array} \right\} \Rightarrow SE \bot \left( {ABC} \right)\) tại \(E\).
\(\Delta SAB\) là tam giá đều có cạnh \(AB = a\) \( \Rightarrow SE = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).
\(\Delta ABC\) vuông tại \(B\) \( \Rightarrow BC = \sqrt {A{C^2} - A{B^2}} = a\sqrt 2 \) \( \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}\sqrt 2 }}{2}\).
Vậy \({V_{S,ABC}} = \frac{1}{3}SE.{S_{\Delta ABC}} = \frac{1}{3}\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 2 }}{2} = \frac{{{a^3}\sqrt 6 }}{{12}}\).

Câu hỏi cùng chủ đề

Xem tất cả