Cho Hình 66 có góc N = góc P = 90°, góc PMQ = góc NQM. Chứng minh MN = QP, MP = QN

Bài 3 trang 92 Toán 7 Tập 2:

Cho Hình 66 có N^=P^=90°,PMQ^=NQM^. Chứng minh MN = QP, MP = QN.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Trả lời

GT

MNQ, MPQ,

N^=P^=90°,PMQ^=NQM^.

KL

MN = QP, MP = QN.

Chứng minh (Hình 66):

Tam giác MNQ có N^=90° (giả thiết) nên tam giác MNQ vuông tại N.

Tam giác QPM có P^=90° (giả thiết) nên tam giác MPQ vuông tại P.

Xét MNQ (vuông tại N) và MPQ (vuông tại P) có:

NQM^=PMQ^ (giả thiết).

MQ chung.

Suy ra MNQ  = QPM  (cạnh huyền - góc nhọn).

Do đó MN = QP và MP = QN (các cặp cạnh tương ứng).

Vậy MN = QP và MP = QN.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 7: Tam giác cân

Bài 8: Đường vuông góc và đường xiên

Bài 9: Đường trung trực của một đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả