Cho Hình 65 có AM = BN, góc A = góc B. Chứng minh: OA = OB, OM = ON
Bài 2 trang 91 Toán 7 Tập 2: Cho Hình 65 có AM = BN, .
Chứng minh: OA = OB, OM = ON.
Bài 2 trang 91 Toán 7 Tập 2: Cho Hình 65 có AM = BN, .
Chứng minh: OA = OB, OM = ON.
GT |
AMO, BNO, AM = BN, . |
KL |
OA = OB, OM = ON. |
Chứng minh (Hình 65):
Xét AMO có: (tổng ba góc trong một tam giác)
Suy ra: . (1)
Xét BNO có: (tổng ba góc trong một tam giác)
Suy ra: . (2)
Mà (theo giả thiết), (hai góc đối đỉnh) (3)
Từ (1), (2) và (3) ta có: .
Xét AMO và BNO có:
(giả thiết).
AM = BN (giả thiết).
(chứng minh trên).
Suy ra AMO và BNO (g.c.g).
Do đó OA = OB và OM = ON (các cặp cạnh tương ứng).
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc