Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ

Câu hỏi khởi động trang 88 Toán 7 Tập 2: Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Người ta muốn đo khoảng cách từ A và từ B đến C. Do không thể đo trực tiếp được các khoảng cách trên nên người ta làm như sau (Hình 55):

- Đo góc BAC được 60°, đo góc ABC được 45°;

- Kẻ tia Ax sao cho BAx^=60°, kẻ tia By sao cho ABy^=45°, xác định giao điểm D của hai tia đó;

- Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.

Tại sao lại có hai đẳng thức trên?

Trả lời

Bài toán được mô tả bởi hai tam giác ABC và tam giác ABD như Hình 55.

GT

ABC, ABD,

BAC^=DAB^=60°, 

ABC^=ABD^=45° 

KL

AC = AD và BC = BD.

Chứng minh (Hình 55):

Xét ABC và ABD có:

BAC^=DAB^=60° (giả thiết),

AB chung,

ABC^=ABD^=45° (giả thiết)

Suy ra ABC = ABD (g.c.g)

Do đó AC = AD và BC = BD (các cặp cạnh tương ứng).

Vậy AC = AD và BC = BD.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 7: Tam giác cân

Bài 8: Đường vuông góc và đường xiên

Bài 9: Đường trung trực của một đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả