Cho hàm số y = x^3 + 3x^2 + mx + m - 2. Với giá trị của m thì hàm số có 2 điểm cực trị nằm về 2

Cho hàm số \(y = {x^3} + 3{x^2} + mx + m - 2\). Với giá trị nào của m thì hàm số có 2 điểm cực trị nằm về 2 phía trục tung.

A. \(m < 0\)
B. \(m > 0\)
C. \(m = 1\)
D. \(m = 0\)

Trả lời

Đáp án A

Phương pháp:

Hàm số bậc ba có 2 điểm cực trị nằm về 2 phía trục tung khi và chỉ khi phương trình\(y' = 0\) có hai nghiệm trái dấu.

Cách giải:

\(y = {x^3} + 3{x^2} + mx + m - 2 \Rightarrow y' = 3{x^2} + 6x + m\)

Hàm số bậc ba có 2 điểm cực trị nằm về 2 phía trục tung khi và chỉ khi phương trình \(y' = 0\) có hai nghiệm trái dấu \( \Leftrightarrow ac = 0\)

\( \Leftrightarrow 3.m < 0 \Leftrightarrow m < 0\)

Câu hỏi cùng chủ đề

Xem tất cả