Cho hàm số y = x + 2/x - 1 có đồ thị là (C) và đường thẳng (d) có phương trình: y = - x + m với m là tham số. Tổng tất cả các giá trị của m để (d) cắt (C) tại hai điểm phân biệt A,B sao cho
43
26/04/2024
Cho hàm số \[y = \frac{{x + 2}}{{x - 1}}\] có đồ thị là \[(C)\] và đường thẳng \[(d)\] có phương trình: \[y = - x + m\] với \[m\] là tham số. Tổng tất cả các giá trị của \[m\] để \[(d)\] cắt \[(C)\] tại hai điểm phân biệt \[A,B\] sao cho \[AB = 2\sqrt 2 \]là
A. 6.
B. 4.
C. \[ - 2\].
D. 2.
Trả lời
Lời giải
Phương trình hoành độ giao điểm của \[(d)\] và \[(C)\] là:
\[\frac{{x + 2}}{{x - 1}} = - x + m \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\{x^2} - mx + m + 2 = 0.(1)\end{array} \right.\]
Để \[(d)\] cắt \[(C)\] tại hai điểm phân biệt \[ \Leftrightarrow \left\{ \begin{array}{l}1 - m + m + 2 \ne 0\\\Delta = {m^2} - 4m - 8 > 0(*)\end{array} \right.\]
Khi đó \[(d)\] cắt \[(C)\] tại \[A({x_1}; - {x_1} + m);B({x_2}; - {x_2} + m)\] với \[{x_1};{x_2}\] là nghiệm của phương trình \[(1)\].
Theo Viet ta có:
\[\begin{array}{l}AB = \sqrt {{{({x_2} - {x_1})}^2} + {{({x_2} - {x_1})}^2}} \\AB = \sqrt {2[{{({x_2} + {x_1})}^2} - 4{x_1}{x_2}]} \\AB = \sqrt {2({m^2} - 4m - 8)} \end{array}\]
Theo giả thiết: \[\sqrt {2({m^2} - 4m - 8)} = 2\sqrt 2 \Leftrightarrow {m^2} - 4m - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}m = - 2\\m = 6\end{array} \right.\] (thỏa mãn \[(*)\]).