Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x - 1)(x + 2) với mọi x. Số các giá trị nguyên m sao cho hàm số y

Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x - 1)(x + 2) với mọi x. Số các giá trị nguyên m sao cho hàm số y=f2x3+3x212xm có 11  điểm cực trị là

A. 23

B. 27

C. 24

D. 26

Trả lời

Chọn C

Ta có:

y=f2x3+3x212xmy'=2x3+3x212xm6x2+6x122x3+3x212xm.f'2x3+3x212xm

f'x=x1x+2=0x=1x=2

Ta có: y'=06x2+6x12=02x3+3x212xm=1 và y' không xác định 2x3+3x212xm=0.

6x2+6x12=0x=1x=2

Theo yêu cầu bài toán thì phương trình 2x3+3x212xm=0 2x3+3x212xm=1 phải có 9 nghiệm phân biệt.

Khảo sát hàm số y=2x3+3x212x ta có được bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x - 1)(x + 2) với mọi x. Số các giá trị nguyên m sao cho hàm số y  (ảnh 1)

Dựa vào bảng biến thiên: 2x3+3x212x=m2x3+3x212x=m+12x3+3x212x=m1 có 9 nghiệm: m+1<20m1>76<m<19

Vậy có 24 giá trị nguyên m thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả