Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ bên. Có bao giá trị nguyên của tham số

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ bên.

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ bên.  Có bao giá trị nguyên của tham số (ảnh 1)

Có bao giá trị nguyên của tham số m0;2023 để hàm số y=mfx+100fx+m có đúng 5 điểm cực trị?

A. 1974

B. 1923

C. 1973

D. 2013

Trả lời

Chọn A

Xét hàm số gx=mfx+100fx+m

Ta có g'x=m2100fx+m2f'x

Với m=±10 thì hàm số g(x) là hàm hằng nên y=gx là hàm hằng nên loại m=±10.

Với m±10, ta có g'x=0f'x=0x=1x=1.

Do đó g(x) có hai điểm cực trị. Nên để hàm số y=gx có đúng 5 điểm cực trị thì phương trình g(x) = 0 có ba nghiệm phân biệt <=> mf(x) + 10 = 0 có ba nghiệm phân biệt.

Với m = 0, phương trình vô nghiệm nên loại m = 0.

Với m0, phương trình fx=100m.

Để fx=100m có ba nghiệm 2<100m<2, mà m0;2023 nên m > 50.

m51;52;...;2023.

Câu hỏi cùng chủ đề

Xem tất cả