Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số đường cong trong hình vẽ bên

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số đường cong trong hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt.

Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số đường cong trong hình vẽ bên (ảnh 1)
A. \(m \in \left( {0;3} \right)\)   

B. \( - 3 < m < 1\)

C. Không có giá trị nào của m.

D. \(1 < m < 3\)

Trả lời

Đáp án D

Phương pháp:

Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số đường cong trong hình vẽ bên (ảnh 2)

Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\)

Cách giải:

Từ đồ thị hàm số \(y = f\left( x \right)\) ta có đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) như hình bên:

Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\)

\( \Rightarrow \) Để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt thì \(1 < m < 3\)

Câu hỏi cùng chủ đề

Xem tất cả