Cho hàm số y = f(x) = 2x^3 + 3x^2 - 12x + 1. Tính giá trị S = min[-1; 2] y + max[-1; 2] y

Cho hàm số \(y = f\left( x \right) = 2{x^3} + 3{x^2} - 12x + 1\). Tính giá trị \(S = \mathop {\min }\limits_{\left[ { - 1;2} \right]} y + \mathop {max}\limits_{\left[ { - 1;2} \right]} y\)

A. \(S = 12\)
B. \(S = 19\)
C. \(S = 8\)
D. \(S = - 1\)

Trả lời

Đáp án C

Phương pháp:

+) Tính \(y'\). Giải phương trình \(y' = 0 \Rightarrow \) các nghiệm \({x_i} \in \left[ { - 1;2} \right]\)

+) Tính \(y\left( { - 1} \right);\,\,y\left( 2 \right);\,\,y\left( {{x_i}} \right)\)

+) So sánh và kết luận.

Cách giải:

TXĐ: \(D = R\)

\(y = f\left( x \right) = 2{x^3} + 3{x^2} - 12x + 1 \Rightarrow y' = 6{x^2} + 6x - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)

\(y\left( { - 1} \right) = 14;\,\,\,y\left( 2 \right) = 5;\,\,\,y\left( 1 \right) = - 6 \Rightarrow \left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = - 6\\\mathop {max}\limits_{\left[ { - 1;2} \right]} y = 14\end{array} \right.\)

\( \Rightarrow S = \mathop {\min }\limits_{\left[ { - 1;2} \right]} y + \mathop {max}\limits_{\left[ { - 1;2} \right]} = - 6 + 14 = 8\)

Câu hỏi cùng chủ đề

Xem tất cả