Cho hàm số y = f( x ) thỏa mãn: Hàm số y = f( 3 - x) - x - căn bậc hai của x^2 + 2 nghịch biến trên khoảng nào sau đây? A. ( 3;5). B. ( - vô cùng ;1). C. ( 2;6). D. ( 2; + vô
36
01/05/2024
Cho hàm số \(y = f\left( x \right)\) thỏa mãn:
Hàm số \(y = f\left( {3 - x} \right) - x - \sqrt {{x^2} + 2} \) nghịch biến trên khoảng nào sau đây?
A. \(\left( {3;5} \right)\).
B. \(\left( { - \infty ;1} \right)\).
C. \(\left( {2;6} \right)\).
D. \(\left( {2; + \infty } \right)\).
Trả lời
Lời giải
Chọn A
Ta có\(y' = - f'\left( {3 - x} \right) - 1 - \frac{x}{{\sqrt {{x^2} + 2} }} \Leftrightarrow y' = - \left( {f'\left( {3 - x} \right) + 1 + \frac{x}{{\sqrt {{x^2} + 2} }}} \right)\).
Ta thấy \(f'\left( {3 - x} \right) > 0 \Leftrightarrow \left[ \begin{array}{l} - 2 < 3 - x < 0\\3 - x > 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3 < x < 5\\x < 0\end{array} \right.\);
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\) thì \(1 + \frac{x}{{\sqrt {{x^2} + 2} }}\) đều có giá trị dương.
Suy ra trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\) thì:\(f'\left( {3 - x} \right) + 1 + \frac{x}{{\sqrt {{x^2} + 2} }} > 0 \Rightarrow y' < 0\)
Vậy hàm số\(y = f\left( {3 - x} \right) - x - \sqrt {{x^2} + 2} \) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\).