Cho hàm số y = f( x ) có bảng biến thiên như sau Hàm số g( x ) = 2f^3( x ) + 4f^2( x ) + 1 có nhiều nhất bao nhiêu điểm cực tiểu?      A. 4   B. 9   C. 5    D. 7

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Media VietJack

Hàm số \(g\left( x \right) = 2{f^3}\left( x \right) + 4{f^2}\left( x \right) + 1\) có nhiều nhất bao nhiêu điểm cực tiểu?

A. \(4\)
B. \(9\)
C. \(5\)
D. \(7\)

Trả lời

Lời giải

Chọn C

Ta có \(g'\left( x \right) = 6{f^2}\left( x \right).f'\left( x \right) + 8f\left( x \right).f'\left( x \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f'\left( x \right) = 0\\f\left( x \right) = - \frac{4}{3}\end{array} \right.\)

Dựa vào bảng biến thiên ta có:

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = {x_2}\end{array} \right.,\) \(f\left( x \right) = - \frac{4}{3} \Leftrightarrow \left[ \begin{array}{l}x = a\\x = b\\x = c\\x = d\end{array} \right.\)

thỏa mãn: \({x_1} < a < - 1 < b < 0 < c < 1 < d < {x_2}\)

Khi đó để có nhiều điểm cực tiếu nhất thì xét dấu của \(g'\left( x \right)\) có dạng:

Media VietJack

Do đó hàm số có nhiều nhất \(5\) điểm cực tiểu.

Câu hỏi cùng chủ đề

Xem tất cả