Cho hàm số y = f( x ) = ax^3 + bx^2 + cx + d; ( a khác 0) có đồ thị như hình vẽ. Phương trình f( f( x )) = 0 có bao nhiêu nghiệm thực?      A. 5.    B. 9.    C. 3.     D. 7.

Cho hàm số \[y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\;\left( {a \ne 0} \right)\] có đồ thị như hình vẽ.
Media VietJack
Phương trình \[f\left( {f\left( x \right)} \right) = 0\] có bao nhiêu nghiệm thực?
A. 5.
B. 9.
C. 3.
D. 7.

Trả lời

Lời giải

Chọn B

Từ đồ thị hàm số đã cho trong hình vẽ ta có phương trình \[f\left( x \right) = 0\] có ba nghiệm phân biệt \[{x_1}\], \[{x_2}\] và \[{x_3}\] thuộc khoảng \[\left( { - 2;2} \right)\] hay \[f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = {x_2}\\x = {x_3}\end{array} \right.\] với \[{x_1}\], \[{x_2}\]và \[{x_3}\] thuộc khoảng \[\left( { - 2;2} \right)\].

Đặt \[t = f\left( x \right)\] ta có \[f\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = {t_1}\\t = {t_2}\\t = {t_3}\end{array} \right.\] hay \[\left[ \begin{array}{l}f\left( x \right) = {t_1}\\f\left( x \right) = {t_2}\\f\left( x \right) = {t_3}\end{array} \right.\] với \[{t_1}\], \[{t_2}\]và \[{t_3}\] thuộc khoảng \[\left( { - 2;2} \right)\]

Dựa vào đồ thị ta thấy ba đường thẳng phân biệt \[y = {t_1}\], \[y = {t_2}\] và \[y = {t_3}\] mỗi đường thẳng luôn cắt đồ thị hàm số tại ba điểm.

Vậy phương trình \[f\left( {f\left( x \right)} \right) = 0\] có \[9\] nghiệm.

Câu hỏi cùng chủ đề

Xem tất cả