Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC. a) Chứng minh rằng ∆AMN ᔕ ∆ACB.

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).

Trả lời

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

Câu hỏi cùng chủ đề

Xem tất cả