Câu hỏi:

19/01/2024 55

Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?

A. 0,88;

B. 0,94;

Đáp án chính xác

C. 1,25;

D. 2,15.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Bán kính đường tròn ngoại tiếp ∆ABC là R = 3.

∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).

Theo hệ quả định lí sin, ta có:

a = 2R.sinA = 2.3.sin30° = 3.

b = 2R.sinB = 2.3.sin45° = \(3\sqrt 2 \).

c = 2R.sinC = 2.3.sin105° = \(\frac{{3\sqrt 6 + 3\sqrt 2 }}{2}\).

Nửa chu vi của ∆ABC là:

\(p = \frac{{a + b + c}}{2} = \frac{{3 + 3\sqrt 2 + \frac{{3\sqrt 6 + 3\sqrt 2 }}{2}}}{2} = \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}\).

Ta có S = pr = \(\frac{1}{2}\)ab.sinC

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{1}{2}.3.3\sqrt 2 .\sin 105^\circ \)

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{{9 + 9\sqrt 3 }}{4}\)

r ≈ 0,94.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?

Xem đáp án » 19/01/2024 56

Câu 2:

Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?

Xem đáp án » 19/01/2024 55

Câu 3:

Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?

Xem đáp án » 19/01/2024 52

Câu 4:

Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:

Xem đáp án » 19/01/2024 52

Câu 5:

Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:

Xem đáp án » 19/01/2024 51

Câu 6:

Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?

Xem đáp án » 19/01/2024 50

Câu 7:

Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?

Xem đáp án » 19/01/2024 49

Câu 8:

Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:

Xem đáp án » 19/01/2024 48

Câu 9:

Cho ∆ABC. Khẳng định nào sau đây đúng?

Xem đáp án » 19/01/2024 46

Câu hỏi mới nhất

Xem thêm »
Xem thêm »