Câu hỏi:

19/01/2024 55

Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?

A. \(a = 6\sqrt 3 ,\,\,b = 2 + 4\sqrt 6 ,c = 4;\);

B. \(a = 6\sqrt 3 ,\,\,b = 4,\,\,c = 2 + 4\sqrt 6 \);

Đáp án chính xác

C. \(a = 6\sqrt 3 ,\,\,b = 4,c = 2 + \sqrt 6 ;\)

D. \(a = 6\sqrt 3 ,\,\,b = 2 + \sqrt 6 ,c = 4\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Theo hệ quả định lí sin, ta có:

a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).

Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).

Suy ra hc = b.sinA

Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).

Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA

Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)

Khi đó c2 – 4c – 92 = 0

Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).

Vì c là độ dài một cạnh của ∆ABC nên c > 0.

Do đó ta nhận \(c = 2 + 4\sqrt 6 \).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?

Xem đáp án » 19/01/2024 55

Câu 2:

Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?

Xem đáp án » 19/01/2024 54

Câu 3:

Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?

Xem đáp án » 19/01/2024 52

Câu 4:

Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:

Xem đáp án » 19/01/2024 51

Câu 5:

Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:

Xem đáp án » 19/01/2024 51

Câu 6:

Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?

Xem đáp án » 19/01/2024 50

Câu 7:

Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?

Xem đáp án » 19/01/2024 48

Câu 8:

Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:

Xem đáp án » 19/01/2024 47

Câu 9:

Cho ∆ABC. Khẳng định nào sau đây đúng?

Xem đáp án » 19/01/2024 46

Câu hỏi mới nhất

Xem thêm »
Xem thêm »