Câu hỏi:
19/01/2024 51
Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:
A. 80°;
B. 90°;
C. 120°;
D. 150°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Vì \(\sqrt 6 - \sqrt 2 < 2\sqrt 2 < 2\sqrt 3 \) nên c < b < a.
Do đó \(\widehat C < \widehat B < \widehat A\).
Tức là, \(\widehat A\) lớn nhất.
Theo hệ quả định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 6 - \sqrt 2 } \right)}^2} - {{\left( {2\sqrt 3 } \right)}^2}}}{{2.2\sqrt 2 .\left( {\sqrt 6 - \sqrt 2 } \right)}} = - \frac{1}{2}\).
Suy ra \(\widehat A = 120^\circ \).
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Vì \(\sqrt 6 - \sqrt 2 < 2\sqrt 2 < 2\sqrt 3 \) nên c < b < a.
Do đó \(\widehat C < \widehat B < \widehat A\).
Tức là, \(\widehat A\) lớn nhất.
Theo hệ quả định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 6 - \sqrt 2 } \right)}^2} - {{\left( {2\sqrt 3 } \right)}^2}}}{{2.2\sqrt 2 .\left( {\sqrt 6 - \sqrt 2 } \right)}} = - \frac{1}{2}\).
Suy ra \(\widehat A = 120^\circ \).
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Câu 2:
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Câu 3:
Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?
Câu 4:
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Câu 5:
Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:
Câu 7:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Câu 8:
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?