Cho ∆ABC = ∆MNP và góc A + góc N = 125°. Tính số đo góc P

Bài 3 trang 79 Toán 7 Tập 2:

Cho ∆ABC = ∆MNP và A^+N^=125°. Tính số đo góc P.

Trả lời

GT

∆ABC = ∆MNP,

A^+N^=125°.

KL

Tính P^ 

Chứng minh (Hình vẽ dưới đây)

Giải Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau (ảnh 1) 

Vì ∆ABC = ∆MNP (giả thiết) nên ta có: A^=M^,B^=P^,C^=N^ (các cặp góc tương ứng)

Mà A^+N^=125° (giả thiết)

Suy ra M^+N^=125°.

Xét tam giác MNP có: M^+N^+P^=180° (tổng ba góc trong một tam giác)

Suy ra P^=180°M^+N^

Hay P^=180°125°=55°

Vậy số đo góc P của tam giác MNP bằng 55°.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 1: Tổng các góc của một tam giác

Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 3: Hai tam giác bằng nhau

Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Câu hỏi cùng chủ đề

Xem tất cả