Cho AB và CD là hai dây cung vuông góc tại E của đường tròn (O). Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ để chứng minh EF

Bài 2 trang 73 Toán lớp 10 Tập 2: Cho AB và CD là hai dây cung vuông góc tại E của đường tròn (O). Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ để chứng minh EF vuông góc với DB.

Trả lời

Ta có hình vẽ sau:

Bài 2 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Đặt AE = a, EB = b, EC = c, ED = d.

Ta chọn hệ trục tọa độ sao cho E(0; 0), A(a; 0), B(b; 0), C(0; c) và D(0; d) và F(a; c).

Xét ∆AEC và ∆DEB, có:

AEC^=DEB^=90°

CAE^=BDE^ (hai góc nội tiếp cùng chắn CB)

⇒ ∆AEC ∽ ∆DEB (g – g)

⇒ AEDE=ACDB=ECEB

⇒ AEDE=ECEB

⇔ AE.EB = DE.EC

⇔ AE.EB = DE.EC

⇔ a.b = d.c

⇔ d.c – ab = 0

Ta có: EF = (a; c), BD = (-b; d)

⇒ EF.BD = a.(-b) + c.d = - ab + cd = 0

⇒ EFBD

⇒ EF ⊥ BD.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Đường tròn trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Bài 2: Xác suất của biến cố

Bài tập cuối chương 10

Câu hỏi cùng chủ đề

Xem tất cả